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In this Letter, we propose a metagrating consisting of simple rectangular bars for nearly unity anomalous dif-
fraction with a large deflection angle. The analysis performed by the scattering-matrix method shows that such
exceptional beam steering derives from the couplings of the two lowest propagation waveguide-array-modes and
their constructive interferences. The tolerance of the incident angle for a high diffraction efficiency (e.g., >90%)
is within a range of 33°. We also discuss that such an advantage still exists after considering a reasonable loss
and dispersion. We envision that the proposed strategy may have wide use in the field of high-performance
wavefront-shaping applications.
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Beam manipulation is important in a broad range of
optical applications. Refractive optics has been the earliest
way to realize beam manipulation by utilizing phase accu-
mulation through bulky optical components. After that,
diffraction optical elements attracted much attention
due to the substantial decrease of thickness and the ability
for more diversiform designs. Diffraction gratings, the
periodic type of diffractive components, have been widely
used in optical devices such as spectrometers and couplers.
Control of diffraction orders promotes the development of
various gratings, among which the blazed grating has a
high performance for steering most of the incident beams
into a specific order. However, it is still challenged by the
shadow effect[1,2] and has a diffraction efficiency limit when
operating at the large deflection angle.
Metasurfaces, a kind of artificially constructed planar

component, broaden the range of possibilities for beam
manipulation[3–5]. By elaborate design of the configuration
of the subwavelength meta-atoms one can obtain arbi-
trary phase profiles, leading to the prominent functional-
ities such as lenses[6,7], holograms[8], beam splitters[9], and
beam deflectors[10–12]. For the cases of beam deflecting or
steering, metasurfaces consisting of periodically arranged
supercells with a 2π linear phase gradient distribution are
severed as a blazed metagrating[13], but still suffer from the
low efficiency of large-angle beam steering due to the gra-
dient phase principle and fabrication limitations on spatial
resolution. To solve the efficiency issue, some efforts have
been made such as engineering the configurations to com-
pensate the impedance mismatch[14,15], or using optimiza-
tion methods[16].
Recently, the metagrating (composed of periodic arrays

of meta-atoms) has been proposed. It is theoretically
demonstrated that the metagrating, formed by periodic ar-
rays of carefully tailored bianisotropic inclusions, enables

ultra-high-efficiency wavefront steering through diffraction
control[17]. In the regime of infrared and visible light, dielec-
tric metagratings for high-efficiency diffraction controlling
are designed using bianisotropic antennas[18], asymmetric
scattering patterns[19–21], or topologically optimized struc-
tures[22–24]. But these metagratings are too complicated with
extreme parameters for fabrication, which may hinder its
wide application as well. In addition, it has also been dem-
onstrated that beam steering can be realized by an array of
simple cylinders[25], but again the diffraction efficiency is a
little bit low. Metallic metagratings can also achieve high-
efficiency beam steering by tuning the plasmonic resonance
in the extraordinary optical diffraction regime[26,27], but they
may suffer from intrinsic ohmic metallic loss.

In this Letter, we show that a metagrating composed of
simple rectangular bars can achieve high-efficiency and
large-angle deflection, with the highest efficiency reaching
97.55%. To explain this phenomenon, the waveguide-
array-mode expansion method is utilized to analyze the
modes in the metagrating and their coupling with the
diffraction waves. We find that it arises from the construc-
tive interference between the two lowest waveguide-array-
mode’s contributions. Moreover, the diffraction efficiency
of the metagrating can maintain over 90% when the
incident angle ranges from 31° to 64°. Finally, we take
the extinction coefficients and dispersion of the material
into consideration to study the applicability of the pro-
posed metagrating. Our work paves the way to experimen-
tally realize high-performance wavefront shaping with a
simple metagrating, which may enable the design of high-
performance optical devices, such as beam scanning, spec-
trometry, and holography.

Figure 1(a) illustrates the metagrating constructed by
an array of simple rectangular bars with a width of s and a
height of h. The refractive index of the dielectric bar is 3.0
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and the periodicity of the metagrating is Λ. R and T
represent the reflected orders and transmitted orders,
respectively. In order to achieve high-efficiency anomalous
refraction with the metagrating, our strategy is to sup-
press all the diffraction orders except for the T−1 order.
Here, the incident beam is p-polarized with the magnetic
field along the y direction.
Figure 1(b) shows the T−1 order diffraction efficiency of

the metagrating in a two-parameter diagram of the nor-
malized wavelength and the incident angle. The definition
of the diffraction efficiency is the energy flux of the specific
order divided by the total incident energy flux. To identify
the allowed propagation diffraction order, Rayleigh
anomaly (RA) lines[28] are plotted in Fig. 1(b) with white
curves. The nth diffraction order is allowed to propagate
only in the region above the nth RA line. It can be found
that there are just the 0th and−1st diffraction orders in the
transmission ambient within the middle panel of Fig. 1(b),
which is bounded by the −1st, 1st, and −2nd Rayleigh
anomaly curves. It is interesting that the T−1 order
diffraction efficiency reaches 97.55% at the point of
λ∕Λ ¼ 1.425 and θi ¼ 45°, indicating nearly unity energy
concentration to the T−1 order. Moreover, it maintains
over 90% for the incident angle range of 31° to 64°, show-
ing a high performance of wide-angle tolerance.
Next, we analyze the modes in the metagrating using

the waveguide-array-mode expansion method[29,30] and
the coupling between the waveguide-array-modes and the
diffraction orders to explain the high-efficiency anomalous
refraction phenomenon highlighted by the white star in
Fig. 1(b), as well as the performance of wide-angle toler-
ance. A three-layer model for describing the mode expan-
sion and coupling mechanism of the metagrating is
shown in Fig. 2(a). Regions I and III are the reflected
and transmitted ambient, and region II is the layer of gra-
ting structure. The electromagnetic fields in region I and
region III can be expanded as plane waves in the directions

of the incident wave and the diffraction orders, denoted by
the red arrows. Inside region II, the grating bars are con-
sidered as a waveguide array[29,31,32]. The electromagnetic
fields in this layer can be expanded by the sum of the
waveguide-array-modes. Figure 2(b) shows the wave vec-
tor components in each region. Considering an obliquely
incident beam with an incident angle θi and a wave-
number k0 ¼ 2π∕λ in vacuum, the x-orientation wave
vector of the nth diffraction order can be calculated by
the relation kxn ¼ k0 sin θi þ 2nπ∕Λ (n ¼ 0;�1;�2; � � � ).
Then, the corresponding z-orientation wave vector can
be expressed by γn ¼ ������������������

k20 − k2xn
p

. According the above re-
lations, the dispersion of γn versus the normalized wave-
length can be obtained [Fig. 2(c)] when the incident angle
θi ¼ 45°. From Fig. 2(c), one can know that there are only
0th and −1st diffraction orders in region I and region III in
the normalized wavelength range from 0.85 to 1.70. We
also plot the θi − γ diagram [Fig. 2(d)] to analyze the angle
tolerance of the high-efficiency anomalous refraction when
the normalized wavelength λ∕Λ ¼ 1.425. From Fig. 2(d),
one can also know that there are only 0th and −1st diffrac-
tion orders in region I and region III when the incident
angle is larger than 25.2°.

In region II, waveguide-array-modes propagate along
the z direction with the propagation constants βm,

Fig. 1. Rectangular dielectric metagrating for nearly unity
anomalous diffraction. (a) A schematic illustration of the dielec-
tric metagrating with a periodicity of Λ, composed of an array of
rectangular bars with the width of s and height of h. (b) A phase
map of the diffraction efficiency of the T−1 order, by varying the
incident angle θi and the normalized wavelength λ∕Λ. The meta-
grating parameters are s∕Λ ¼ 0.34 and h∕Λ ¼ 0.604. The three
white curves correspond to the −1st, 1st, and −2nd Rayleigh
anomaly, respectively. The white star in the center marks the
highest T−1 order efficiency of 97.55%.

Fig. 2. Mode dispersions of the rectangular dielectric meta-
grating. (a) A sketch of the mode expansion and coupling mecha-
nism of the metagrating. (b) Wavevector components of the
diffraction orders or waveguide-array-modes. Here, γ is the
z-orientation wave vector of the incidence/exit ambient (regions
I and III). (c) λ− γ diagram of the metagrating at θi ¼ 45°.
(d) θi − γ diagram at λ∕Λ ¼ 1.425, showing the appearance of
the T−1 order just when θi > 25.2°. (e) λ− β diagram at
θi ¼ 45°. (f) θi − β diagram at λ∕Λ ¼ 1.425. For (c)–(f), the gra-
ting parameters are s∕Λ ¼ 0.34 and h∕Λ ¼ 0.604.
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as illustrated in Fig. 2(b). ks;m and ka;m are the x-orientation
wave vectors in the dielectric bars and the air gaps, respec-
tively. Because the metagrating consists of simple rectan-
gular bars, one can use the analytical expressions of the
waveguide-array-modes to derive the dispersion relation.
By matching the continuous boundary condition and the
Bloch boundary condition, one can derive the equation
between ks;m and ka;m, which is expressed as[30]

1
n2
bar

ka;mks;m½1þe2ikx0Λ−2cosðks;msÞcosðka;maÞeikx0Λ�

þsinðks;msÞsinðka;maÞ
�
k2a;mþ 1

n2
bar

k2s;m

�
eikx0Λ¼0: (1)

Note that βm, ks;m, and ka;m have the following relation:

β2m ¼
�
2π
λ

�
2
− k2a;m ¼

�
nbar

2π
λ

�
2
− k2s;m: (2)

According to Eq. (1) and Eq. (2), one can get the relation
between βm and the normalized wavelength λ∕Λ when the
incident angle θi ¼ 45° [Fig. 2(e)]. From Fig. 2(e), one can
know that only the 0th and 1st propagating waveguide-
array-modes can be excited in region II when the normal-
ized wavelength is larger than 1.22, while the higher-order
waveguide-array-modes are evanescent waves in the gra-
ting. We can also have the relation between βm and the
incident angle θi when the normalized wavelength λ∕Λ ¼
1.425 [Fig. 2(f)]. From Fig. 2(f), one can also know that
only the 0th and 1st propagating waveguide-array-modes
can be excited in region II when the incident angle is larger
than 12.5°.
Until now, we have known the dispersions of the excited

waveguide-array-mode of themetagrating, and the allowed
propagation diffraction order in an ambient medium. Next,
we will investigate how the waveguide-array-modes couple
to the diffraction wave, which determines the energy distri-
bution of each diffraction order. Actually, a quantified
analysis of the mode coupling process has been presented
in the system of high-contrast-gratings to explain the
phenomenon of broadband high reflectivity, where only
the 0th diffraction order is allowed to propagate[30]. Here,
we will apply this method to analyze the grating with
more than one diffraction orders. We denote the reflection
and transmission coefficients of the nth diffraction orders
as rn and tn, respectively. The waveguide-array-modes
propagating forward and backward along the z direction
are defined as Am ¼ ame−iβmðz−hÞ and Bm ¼ bmeiβmðz−hÞ.
They can also be expressed as the vector forms:
r¼ð��� ;r−2;r−1;r0;r1;r2; � � �Þ, t¼ð��� ;t−2;t−1;t0;t1;t2; � � �Þ,
A¼ðA0;A1;A2;A3;A4; � � �Þ, and B¼ðB0;B1;B2;B3;B4;���Þ.
The vector form of the incident wave is defined as
inc ¼ ð� � � ; 0; 0; 1; 0; 0; � � �Þ. According to the boundary con-
dition, the scattering matrix at the interface of z ¼ 0
can be expressed as

�
r

Aðz ¼ 0Þ
�
¼

�
ρ0 τ
τ0 ρ

��
inc

Bðz ¼ 0Þ
�
: (3)

Similarly, the scattering matrix at the interface of
z ¼ h is

�
t

Bðz ¼ hÞ
�
¼

�
τ ρ0

ρ τ0

��
Aðz ¼ hÞ

0

�
: (4)

Here, the matrices τ, τ0 , ρ, and ρ0 describe the cross
coupling between the waveguide-array-modes and their
interaction with the waves in vacuum. As shown in
Fig. 2(a), a part of the incident beam is directly reflected
to region I with the coefficient ρ0. Meanwhile, the rest of
the incident beam transmits to the grating structure with
the coefficient τ0 and excites the forward propagating
waveguide-array-modes A. After reaching the lower inter-
face, a part of these modes will contribute to the diffrac-
tion waves with the coefficient τ and the rest of them will
couple to the backward propagating waveguide-array-
modes B with the coefficient ρ, which is the same for
the upper interface when the backward propagating
modes B reach.

From Eq. (4), one can know the transmission coeffi-
cients can be expressed as

t ¼ τ · Aðz ¼ hÞ: (5)

The diffraction efficiency of each transmission order is
expressed as

Tn ¼ jtðnÞj2 γn
γ0

: (6)

Note that the highest efficiency in Fig. 1(b) corresponds
to the case of θi ¼ 45° and λ∕Λ ¼ 1.425. Figure 3 shows
the spectra in the normalized wavelength range from
1.22 to 1.69 of the diffraction efficiencies of T−1 and T 0

orders when the incident angle θi ¼ 45°. In this range,
one can find that there are just 0th and −1st diffraction or-
ders from Fig. 2(c) and the two lowest waveguide-array-
modes (β0 and β1) will propagate from Fig. 2(e). The solid
lines in Figs. 3(a) and 3(c) are the results calculated by
Eq. (5) and Eq. (6) with enough waveguide-array-modes
considered. It agrees well with the simulation result ob-
tained by the finite element method (FEM), which is
shown by the square marks. This indicates that our
method based on the waveguide-array-mode expansion
is correct. The dashed lines are the results calculated by
Eq. (5) and Eq. (6) but considering only the two lowest
waveguide-array-modes. They are approximate to the sim-
ulation and the enough modes calculation as well, which
implies that the main contributions for the diffraction
orders are from the propagating waveguide-array-modes.

To understand the mechanism of the high-efficiency
anomalous refraction in detail, the individual contribu-
tions of the first two waveguide-array-modes (mode0
and mode1) are calculated. According to Eq. (5),
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the transmission coefficient of each diffraction order is the
coherent superposition of each waveguide-array-mode’s
contribution, i.e.,

tð−1Þ ¼ τ−10A0ðz ¼ hÞ þ τ−11A1ðz ¼ hÞ þ � � � ; (7)

tð0Þ ¼ τ00A0ðz ¼ hÞ þ τ01A1ðz ¼ hÞ þ � � � : (8)

In Eq. (7) [Eq. (8)], the first term is mode0’s contribu-
tion and the second term is mode1’s contribution for the
T−1 (T0) order. Figure 3(b) shows the amplitudes of
mode0’s contribution (black solid line) and mode1’s con-
tribution (black dashed line). The blue line represents
the phase difference between mode0’s contribution and
mode1’s contribution. Note that these two amplitudes
are nearly equal and the phase difference is near zero when
the normalized wavelength λ∕Λ ¼ 1.425. The diffraction
efficiency resulting from the constructive interference of
these two modes is shown by the dashed line in Fig. 3(a)
and the result at λ∕Λ ¼ 1.425 is near 100%, which is
consist with the result calculated by the FEM. Therefore,
it is the constructive interference between mode0’s contri-
bution and mode1’s contribution that results in the
high-efficiency anomalous refraction at λ∕Λ ¼ 1.425. In
Fig. 3(a), away from the point of λ∕Λ ¼ 1.425, the dashed
line is close to the solid line in the long-wavelength region
but deviates from the solid line in the short-wavelength
region. This small discrepancy indicates that the two low-
est propagating modes play a major role in generating the
diffraction waves and the other evanescent modes also

have contribution in the short-wavelength region. In
the same way, we also calculate the diffraction efficiency
of the T0 order. In Fig. 3(c), the vertical dashed line also
indicates the normalized wavelength of 1.425 and the inset
shows the zoomed-in view of the diagram. One can see that
the diffraction efficiency of the T0 order at λ∕Λ ¼ 1.425 is
near zero. Similarly, we also calculate the amplitudes of
mode0’s contribution (black solid line) and mode1’s con-
tribution (black dashed line), as shown in Fig. 3(d). The
blue line represents the phase difference between mode0’s
contribution and mode1’s contribution. Note that these
two amplitudes are nearly equal at λ∕Λ ¼ 1.425, but
the phase difference is near π. Thus, the destructive inter-
ference between these two modes’ contributions leads to
the ultra-low diffraction efficiency of the T0 order at
λ∕Λ ¼ 1.425. Compared with the dashed line in Fig. 3(c),
the discrepancy between the dashed line and the solid line
in the short-wavelength region is larger in Fig. 3(a).
Because the evanescent modes provide more contribution
to the T−1 order in the short-wavelength region.

Next, we will explain the wide-angle tolerance phenome-
non of the high-efficiency anomalous refraction. Here, we
set the normalized wavelength equal to 1.425 and calcu-
late the diffraction efficiency of the T−1 and T0 orders
when the incident angle changes from 20° to 80°. As shown
in Fig. 4(a), the result calculated by Eq. (5) and Eq. (6)
with enough waveguide-array-modes considered (solid
line) agrees well with the simulation result obtained by
the FEM (square mark). The inset shows the zoomed-in
view of the diagram. In the small-angle region, the diffrac-
tion efficiency of the T−1 order is zero. This is because the
T−1 order is not allowed to propagate in this region,

Fig. 4. Interferences of the modes and their contributions to the
diffraction efficiencies with λ∕Λ ¼ 1.425. (a) The diffraction
efficiencies versus incident angle calculated by the FEM (square
marks) and the waveguide-array-mode expansion method con-
sidering enough modes (solid lines) and two propagating modes
(dashed lines). The inset is the zoomed-in view of the diagram.
(b) The amplitudes and phase differences of two modes at differ-
ent incident angles. The two vertical dashed lines indicate the
incident angles of 31° and 64°. (c) and (d): similar to (a) and
(b), but for the T0 order.

Fig. 3. Interferences of the modes and their contributions to
the diffraction efficiencies with an incident angle of θi ¼ 45°.
(a) The diffraction efficiency of the T−1 order calculated by
the FEM (the square marks), the waveguide-array-mode expan-
sion method considering enough modes (solid lines), and consid-
ering two propagating modes (dashed lines). (b) The amplitudes
and phase differences of the two modes versus the normalized
wavelength. The superposition of these two modes’ contribution
results is shown with the dashed line in (a). (c) and (d): similar to
(a) and (b), but for the T0 order. The inset in (c) shows the
zoomed-in view of the diagram. The vertical dashed line indicates
the normalized wavelength of 1.425.
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according to the result shown in Fig. 2(d). One can see
that the diffraction efficiency of the T−1 order maintains
over 90% when the incident angle ranges from 31° to 64°.
To explain this phenomenon, we calculate the individual
contribution of the first two waveguide-array-modes
[Fig. 4(b)]. Figure 4(b) shows the amplitudes of mode0’s
contribution (black solid line) and mode1’s contribution
(black dashed line). The blue line represents the phase dif-
ference between these two modes’ contributions. When
the incident angle ranges from 31° to 64°, one can see that
the amplitudes of these two modes’ contributions are
nearly equal and the phase difference stays close to zero.
The diffraction efficiency resulting from the constructive
interference of these two modes is shown by the dashed
line in Fig. 4(a), which is consist with the result calculated
by the FEM. Therefore, it is the constructive interference
between these two modes’ contributions over a wide
angle range that results in the wide-angle tolerance of the
high-efficiency anomalous refraction. In contrast, the dif-
fraction efficiency of the T0 order is near zero when the
incident angle ranges from 31° to 64° [Fig. 4(c)]. From
the amplitudes and phase differences of two modes’ con-
tributions [Fig. 4(d)], one can find that it is the destructive
interference between these two modes’ contributions over
a wide angle range that results in the near-zero diffraction
efficiency, as shown by the dashed line in Fig. 4(d).
Apart from the diffraction efficiency, we also calculate

the electric fields in each region. We calculate the Ex field
distribution when λ∕Λ ¼ 1.425 and θi ¼ 45°, by both the
FEM full wave simulation [Fig. 5(a)] and the waveguide-
array-mode expansion method [Fig. 5(b)]. They are quite
consistent with each other. By decomposing the total Ex

field into a series of the waveguide-array-modes, one can
see that just the two lowest propagating modes are excited
while the second-order (m ¼ 2) evanescent mode is excited

a little bit in Fig. 5(d), which is consistent with the result
in Fig. 2(e). In addition, one can also decompose the total
Ex field in region I and region III, as shown in Figs. 5(c)
and 5(e). It is obviously that nearly all the electromagnetic
waves are deflected to the T−1 order, which is consistent
with the results shown in Figs. 3(a) and 4(a).

In practice, the loss and dispersion of the material
should be considered. Now, we study the influence of
material loss and dispersion on the performance of the
metagrating. We first study the influence of the material
loss by considering the metagrating whose dielectric bars
are made of material with a fixed refraction index (n ¼ 3)
but different extinction coefficients κ. Figure 6(a) shows
that the diffraction efficiency with a small extinction co-
efficient (κ ¼ 10−3, green dashed) is nearly the same as in
the no-loss case (κ ¼ 0, red), and it will still keep a high
level with the value of 93.29% when κ ¼ 10−2 (blue). Sim-
ilar behavior is found out when changing the incident an-
gle at the normalized wavelength of 1.425. From Fig. 6(b),

Fig. 5. Analysis of the anomalous refraction by mode decompo-
sition. (a) The simulation result of the Ex field obtained by the
FEM in the case of θi ¼ 45° and λ∕Λ ¼ 1.425. (b) The Ex field
calculated by the waveguide-array-mode expansion method.
(c) and (e) The Ex fields of different diffraction orders in the re-
flected and transmitted regions, respectively. (d) The waveguide-
array-modes inside the grating.

Fig. 6. Influence of material loss, material dispersion, and the
substrate on the performance of the metagrating. (a) and (b)
The T−1 order’s diffraction efficiency versus (a) wavelength or
(b) incident angle when the dielectric bars’ extinction coefficient
κ ¼ 0 (red), κ ¼ 10−3 (green dashed), and κ ¼ 10−2 (blue).
(c) The T−1 order’s diffraction efficiency versus wavelength
when the dielectric bars are made of silicon-based material
(green) or no-loss material with n ¼ 3 and κ ¼ 0 (red).
(d) The T−1 order’s diffraction efficiency versus incident angle
when the dielectric bars are made of material with n ¼ 3 at
the wavelength of 640 nm (red) and silicon-based material at
the wavelengths of 640 nm (purple) and 653 nm (green dashed).
(e) and (f) The T−1 order’s diffraction efficiency versus (e) wave-
length or (f) incident angle when the metagrating is freestanding
(green) or standing on the SiO2 substrate (orange).
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one can see that the spectrum in the case of κ ¼ 10−3 is
nearly the same as in the case of κ ¼ 0. When κ ¼ 10−2,
the high-efficiency (over 90%) range changes to 35°−
58°, which is still a large wide-angle tolerance. Note that
the value of the extinction coefficient discussed above is
the representative number for common dielectric materi-
als such as silicon and silicon nitride.
We then study the performance of the metagrating

made of a realistic lossy silicon-based material, with both
the loss and dispersion considered. The refractive index and
extinction coefficient are shown in the inset of Fig. 6(c).
Here, we consider the metagrating with s ¼ 153 nm, h ¼
271 nm, and periodicity Λ ¼ 449 nm. In this case, the peak
position of the metagrating with n ¼ 3 is 640 nm, accord-
ing to the results in Fig. 3(a). Figure 6(c) shows the T−1
order’s diffraction efficiency versus wavelength when the
dielectric bars are made of either the lossy material (green)
or the no-loss material with n ¼ 3 (red). The efficiency of
the lossy case drops a little and the low-quality peak also
shifts. Figure 6(d) shows the efficiency of the lossy case still
has a wide enough angle tolerance at both wavelengths of
640 nm and 653 nm.
We also study the influence of the substrate on the per-

formance of the metagrating. Figure 6(e) shows the T−1
order’s diffraction efficiency versus wavelength when the
metagrating is freestanding (green) or standing on the
SiO2 substrate (orange). One can see that the peak effi-
ciency only drops a little when the substrate is considered.
Figure 6(f) shows the diffraction efficiency of the meta-
grating with the SiO2 substrate has still wide enough angle
tolerance at the peak wavelength of 653 nm. In addition,
one may further broaden the bandwidth by using a
low waveguide-array-mode dispersion. For example, a
straightforward way is to use a lower refraction index
material for the metagrating design.
In summary, we demonstrate that a metagrating com-

posed of an array of rectangular bars can achieve a high
efficiency (the highest efficiency reaches 97.55%) and
large-angle deflection without the requirement of a com-
plex structure. Furthermore, the diffraction efficiency
stays over 90% when the incident angle ranges from 31°
to 64°. The property of wide incident angle tolerance, which
is desirable in many applications, may enable the design of
angle-insensitive and high-efficiency optical devices. Using
the waveguide-array-mode expansion method, we find that
it is the constructive interference between the waveguide-
array-modes’ contributions over a wide angle range that
results in the high-efficiency and wide-angle anomalous
refraction. This indicates that control of each waveguide-
array-mode’s contribution in the metagrating may be a fea-
sible way to design high-performance optical devices. By
considering the extinction loss and dispersion of a realistic
silicon-basedmaterial, or differentmaterial loss coefficients,
we expect that a silicon-based metagrating can be used to
achieve large angle deflection with a high efficiency.
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